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Abstract. Relaxation phenomena in the binary gas-mixture with different temperature and different velocities are 
discussed on the basis of two Boltzmann equations. The Hermite expansion method, extended by H.Grad to multi-
dimensional space, is applied to express distribution functions and the Galerkin method is used to solve two Boltzmann 
equations. Thus, a system of differential equations for the expansion coefficients is obtained. The time development of 
the system is calculated numerically.  
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INTRODUCTION 

Relaxation phenomena in the binary gas-mixture with different temperatures and different velocities are 
discussed on the basis of two Boltzmann equations. The separate heating of the binary gas-mixture could be done, 
for example, by hydrogen gas and water vapor in a glass container in a microwave oven. The microwave oven is 
devised as stronger heating of water than the hydrogen gas. The electric current in plasma would be an example of 
different velocities. The Hermite expansion method of the distribution function is developed by H. Grad1 for solving 
Boltzmann equation of a simple gas. This method would be extended to binary gas-mixture, i.e. the Hermite 
expansion to two distribution functions for both gases is taken. We have two Boltzmann equations expanded by 
Hermite functions. The Galerkin method is applied to solve two Boltzmann equations, i.e. the scalar products of 
Hermite functions and the Boltzmann equations are taken. Thus, a system of partial differential equations for the 
expansion coefficients is obtained and the coefficients are functions of position and time. We calculate numerically 
the time development of the solutions.  

BASIC EQUATIONS 

  We have the Boltzmann equations for two gases: 
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where ( )im , )  and ( ) ( ti ,xv ( ) ( )( ) ( ) ( ) ( )tt iiii ,,,~ xvccxc −=

( )ij
Ck

 are respectively the mass, the mean velocity  and the peculiar 
velocity of the -molecule.  can be written as i
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where ( )ijb  and  are the collision parameter and the deflection angle between  i -and -molecules.  Furthermore, 
the molecular velocities of the final state are 

( )ijχ j
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The collision term is valid for . The macroscopic physical values, that is, number density, mean velocity, 
temperature, pressure, pressure tensor, heat flow and the internal energy are defined respectively as follows, 
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Where ( )iN  is the degree of freedom of the translational and internal motions in a molecule. 

HERMITE EXPANSION 

The Hermite expansion method developed by H.Grad for solving Boltzmann equation for a simple gas, would be 
extended to binary gas-mixture. The Hermite functions are defined as follows, 
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Where, is normalized peculiar velocity and the parameter is the thermal velocity as follows ( )iξ ( ) 1−iα
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Here, the velocity distribution function could be constructed as the product of the Maxwell distribution function and 
Hermite expansion. The rest is expressed by ( ) ( )( )tii ,,ξxφ  which is generally described by the Hermite expansion as   
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Then the distribution functions are described as 
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In this paper, the order of the Hermite expansion is taken up to 2. For our problem, the initial conditions are 
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Therefore, the initial conditions imply that physical variables depend only time, and are spatial uniformity. These 
give 
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Thus, we have six variables . ( ) ( ) ( ) ( )2122111 ,,, =ΑΑΑ iiii

 

DERIVATION OF THE DIFFERENTIAL EQUATIONS FOR THE HERMITE 
EXPANSION COEFFICIENTS 

The Galerkin method is applied: 
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From these equations, the differential equations for ( ) ( ) ( )iii

22111 ΑΑΑ ,,  are obtained. The system of differential 
equations could be described with a matrix form as follows,  
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( )iC 00; ～ ( )iC 2222;  and ( )ijD 001 ,; ～ ( )ijD 02222 ,; are expressed by scalar products of the Hermite functions,  etc. The 

scalar products are defined: 
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THE DEFINITION OF THE DIFFERENTIAL CROSS SECTION 

We define the intermolecular force consisting of an inverse fifth- and third-order power, which are 
respectively repulsive in inner range and attractive in the outer range, of intermolecular distance. This potential is 
described as 



 

24 rr
U ba κκ

+−=           (13) 

 
The depth of the intermolecular potential is ( )abU κκ 42

0 −=  at the position 
ba κκδ 2= where the r-differential of 

the potential is equal to zero. The distance at this point from the center of δ −i molecule could be considered as the 
molecular size. Using of this intermolecular potential and the kinetic energy 22gμ=E of -and i j -molecules with 
the effective mass μ  and the relative velocity ( ) ( )icjc −=g . By taking second order of the elliptic function obtained 

from the orbital integration, is obtained as ( )ij
Ck
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 In this paper, as an approximation, the relative velocity g  could be changed to the mean value as,   
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which was proposed by one of authors(S.K.)2.  

THE ASYMPTOTIC VALUE OF THE MEAN VELOCITY AND THE TEMPERATURE 

The final velocity  can be estimated from the conservation of momentum: ( ) ( )ji vvv ∞∞∞ ==
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ∞+=+ vnmnmvnmvnm 2
0

21
0

12
0

2
0

21
0

1
0

1  
From this, we can get 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )2
0

21
0

1

2
0

2
0

21
0

1
0

1

nmnm
vnmvnm

v
+
+

=∞
        (16) 

 
Similarly, the final temperature can be also obtained from conservation of energy: ( ) ( )ji TTT ∞∞∞ ==
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From this, we can get 
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NUMERICAL RESULTS 

In the calculation of the equation obtained above, the molecular diameter ( )12δ , the collision time  and the 
thermal velocity of the second gas are chosen with superscript as unit of non-dimensionalization of them:  
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Because ( ) ( ) ( ) 11222 =δτ mc c , the non-dimensional Boltzmann equation, removed *, is obtained with the coefficient of 

the collision term such as . It is approximately equal one because of ( ) ( )3122
0 δn ( )2

0
3 1 nn =l and ( ) 13312 ≈nlδ . 

In the numerical calculations, the initial are put as (1) ( ) 41 =m , ( ) 12 =m , ( ) 511
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0 =v , 2=aκ , 40=bκ . The numerical calculations give that the 
relaxation time for velocity and temperature are the same order for mass ratio of the order one but the relaxation 
time of temperatures is much longer than that of velocity for much different masses. The calculated values of final 
velocity and final temperature are almost equal to these obtained from the conservation laws.  
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Case 3-3 

   
FIGURE 1.  The calculation results are shown for five cases.  



SUMMERY 

The relaxation phenomena of binary gas-mixture with different velocities and different temperatures are 
discussed on the basis of two Boltzmann equations. The distribution functions of both gases are expanded by 
Hermite functions of H.Grad. Appling the Garelkin method to solve the Boltzmann equations, we have a system of 
differential equations of the expansion coefficients. From the conservation of momentum and energy, we can get 
final values of velocity and temperatures by use of initial ones. The numerical conditions are done for five cases 
varing initial conditions of velocity and temperature and of different mass ratios. The numerical asymptotic values of 
velocity and temperature are equal to those obtained by conservation laws. The results of numerical calculations 
show also that for the cases with the mass ratio of the order one the relaxation times of temperature and velocity are 
of the same order and the relaxation time for temperature is much longer than that of velocity for the cases for much 
different masses.  
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